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Abstract. We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of
an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles
in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle
is obtained either by a numerical calculation of the partition function or analytically in the low and
high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The
magnetization of an interacting assembly is computed analytically in the range of low and high field,
and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly
magnetization are provided which take account of the dipolar interactions, temperature, magnetic field,
and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from
the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal
moment distribution.

PACS. 75.50.Tt Fine-particle systems; nanocrystalline materials – 75.10.Hk Classical spin models –
05.20.-y Classical statistical mechanics

1 Introduction

In order to investigate the fundamental properties of mag-
netic nanoparticles and the novelties they exhibit, new
materials had to be made and characterized [see, e.g., the
recent review articles [1,2]]. Nowadays, there are mainly
two prototypes of nanoparticle samples: i) assemblies of,
e.g., cobalt, Nickel or maghemite nanoparticles [3] embed-
ded in a non-magnetic matrix with volume distribution
and randomly oriented easy axes, with negligible-to-strong
dipole-dipole inter-particle interactions (DDI), depending
on concentration; ii) isolated single particles of cobalt or
nickel measured by the technique of µ-SQUID [4]. Techno-
logical applications require to some extent ever denser as-
semblies and thus smaller particles. However, this leads to
a dilemma because small particles become superparamag-
netic at even low temperatures, and an optimum material
[with appropriate anisotropy and other physical parame-
ters] has still to be devised. Moreover, high density en-
tails strong DDI among the particles, and in technological
applications such as magnetic recording, this is an issue
of special importance because DDI have been widely rec-
ognized as being responsible for the deterioration of the
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signal-to-noise ratio [see e.g., Refs. [5,6] and references
therein].

Experimentally, investigation of the effect of dipolar
interactions in nanoparticle assemblies has revealed many
new phenomena pertaining to the collective behavior of
the particles, notably the so-called spin-glass state at low
temperature in concentrated assemblies [7–9], owing to the
long-range of inter-particle DDI. It has also been observed
that the field behavior of the temperature Tmax at the
maximum of the zero-field-cooled magnetization strongly
depends on the concentration of the assembly [10–12].
More precisely, the maximum of Tmax as a function of
the applied field observed in dilute samples disappears
when the concentration of the latter is increased. To-
day, there arises a more fundamental issue about assem-
blies of nanoparticles that concerns the understanding of
the interplay between the intrinsic properties, such as
those pertaining to surface effects, and extrinsic or col-
lective effects stemming from the long-range DDI. Many
research groups have experimentally studied this interplay
in cobalt and maghemite particle assemblies. Measure-
ments of the magnetization at high fields performed on the
γ-Fe2O3 nanoparticles [9,12], [see [13] for cobalt particles]
have shown that the magnetization is strongly influenced
by surface effects, depending on the particle size. For in-
stance, Figure 1 of reference [14] shows that i) there is a
sudden increase of the magnetization as a function of the
applied field when the temperature reaches 70 K, and the
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magnetization does not saturate at the highest available
field, i.e., 5.5 T. ii) there is an important increase of the
magnetization at low temperature, iii) the thermal behav-
ior of the magnetization at 5.5 T is such that the smaller is
the mean diameter of the particle the faster is the increase
of the magnetization at very low temperature.

From the theoretical point of view, the situation in-
volving both surface effects and dipolar interactions has
never been considered so far mainly because of its tremen-
dous complexities, and also because one has first to un-
derstand these two effects separately. Needless to say that,
already at the static level, no exact analytical treatment of
any kind is ever possible even in the one-spin approxima-
tion, i.e., ignoring the internal structure of the particles
and thereby surface effects. Only numerical approaches
such as the Monte Carlo technique can relieve some of
this frustration. Indeed, applications of this technique to
the case of Ising dipoles can be found in reference [15].
The same technique has been used in reference [16] to
study hysteretic properties of monodisperse assemblies
of nanoparticles with the more realistic Heisenberg spin
model, in the one-spin approximation where each parti-
cle carries a net magnetic moment. In reference [17], the
Landau-Lifshitz thermodynamic perturbation theory [18]
is used to tackle the case of weakly dipolar-interacting
monodisperse assemblies of magnetic moments with uni-
formly or randomly distributed anisotropy axes. The au-
thors studied the influence of DDI on the susceptibility
and specific heat of the assembly.

In the present work, we use the same approach as in
reference [17] with the objective to study the effect of
anisotropy and (weak) dipolar interactions on the field and
temperature behavior of the magnetization of a monodis-
perse and polydisperse assembly of magnetic moments.
For this purpose, we consider an assembly of magnetic
moments whose magnitudes are distributed according to a
Gaussian or (the more often observed) lognormal law. The
anisotropy is taken as uniaxial and either textured along
some reference axis or randomly distributed. The statisti-
cal average of the assembly magnetization is obtained, for
weak DDI, using the thermodynamic perturbation the-
ory, as in reference [17], but here the magnetic field is
explicitly included in the assembly magnetic energy. The
low field regime, dealt with in reference [19], is general-
ized here so as to take account of polydispersity and DDI.
In high fields, the magnetization as a function of tem-
perature and field is computed using the steepest-descent
approximation. In the general range of temperature, field,
and anisotropy, the magnetization of a non-interacting as-
sembly is computed exactly by numerical integration of
the single-moment (free) partition function or using the
Monte-Carlo simulation technique. For interacting assem-
blies, we use the Monte Carlo technique.

One of the objectives is to provide ready-to-use (semi)
analytical formulae for the field and temperature depen-
dence of the assembly magnetization that take into ac-
count moment and easy axes distributions, and weak
dipolar interactions. Moreover, we investigate the effect
of anisotropy and DDI and discuss the validity of the

Langevin law, for both textured and random anisotropy,
which is invariably used in the literature to interpret the
magnetization measurements on nanoparticle assemblies.
The present work is also an extension of the study in ref-
erence [20] where anisotropy was ignored.

The layout of this paper is as follows: Section 2 de-
fines the energy and notation. The first new results of the
present work appear in Section 3 where we use pertur-
bation theory to derive an analytical expression for the
magnetization taking account of DDI. Then, we give ap-
proximate expressions in the limiting cases of low and high
field regimes, for both a free and interacting particle, and
for both monodisperse and polydisperse assemblies. We
compare these expressions with the exact numerical cal-
culation, and also discuss the effect of anisotropy. This
section ends with a Monte Carlo calculation and discus-
sion of the corresponding results of more realistic assem-
blies of magnetic nanoparticles, namely assemblies with
the lognormal distribution for the magnetic moments de-
rived from experimental data of nanoparticle assemblies
with mean diameter Dm = 3 and 7 nm. The last section
is a conclusion and statement of a few open problems to
be dealt with in future investigations.

2 Energy

Consider an assembly of magnetic moments mi =
misi, i = 1, . . . ,N of magnitude mi and direction si, with
|si| = 1. The magnitude of the magnetic moment mi

is then defined in terms of the Bohr magneton µB, i.e.,
mi = niµB, and the numbers ni are either all equal
for monodisperse assemblies or chosen according to some
distribution, the so-called polydisperse assemblies. Each
magnetic moment will have a uniaxial easy axis ei, and
for an assembly these may be either all directed along
some reference axis leading to a textured assembly, or
randomly distributed. The latter case will be referred to
as random anisotropy. Hence, the energy of a magnetic
moment mi interacting with all the others via DDI, in
the magnetic field H = Heh, reads [after multiplying by
−β = −1/kBT ],

Ei =
KVi

2kBT
(si · ei)

2 +
niHµB

kBT
(si · eh)

+
µ0µ

2
Bni

4πa3kBT

∑

j<i

nj
3(si · eij)(sj · eij) − si · sj

r3ij
, (1)

where
rij = ri − rj , eij = rij/rij (2)

is the vector joining the sites i and j and whose magni-
tude is measured in units of a, a characteristic length on
the lattice to be evaluated later on. Since we are consid-
ering assemblies with moment instead of volume distribu-
tion, the volume Vi in (1) is rewritten in terms of ni via
the saturation magnetization of the material per unit vol-
ume Ms, i.e., Vi = mi/Ms = (µB/Ms)ni. For convenience
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we introduce the dimensionless parameters

x =
µBH

kBT
, σ =

µBK

MskBT
, ξd =

µ0µ
2
B

4πa3kBT
, (3)

and define xi = xni, σi = σni. Note that σi = KVi/(kBT )
is the commonly used notation for the reduced anisotropy-
barrier height of the particle i. Therefore, we rewrite (1) as

Ei = xisi · eh +
σi

2
(si · ei)2

+ξd
∑

j<i

ninj
3(si · eij)(sj · eij) − si · sj

r3ij
(4)

≡ E(0)
i + ξd

∑

j<i

ninj
3(si · eij)(sj · eij) − si · sj

r3ij
,

where E(0)
i is the free particle energy. In what follows we

also occasionally use the dimensionless magnetic moment
vector Si = nisi, and the DDI term is rewritten as a
quadratic form in Si

∑

j<i

3(Si · eij)(Sj · eij) − Si · Sj

r3ij
=

∑

j<i

Si · Dij · Sj ≡
∑

j<i

Φij , (5)

where we have introduced the DDI tensor [17]

Dij ≡ 1
r3ij

(3eijeij − 1) . (6)

3 Magnetization

3.1 General formulation

In order to calculate the thermal-equilibrium average of
any observable O(s1, . . . , sN ) we have to average over each
particle’s moment direction si, the direction of its easy
axis ei, and the magnitude mi of its moment (or equiva-
lently ni). The average of O with respect to spatial orien-
tations of all spins is

〈O〉 =
1
Z

∫
DΩ eE O. (7)

where

Z =
∫
DΩ eE ,

with DΩ =
∏

i dΩi =
∏

i d
2si/2π, and E =

∑
i Ei. In

particular, the magnetization component along the field
taken, for instance, along ez, of a single particle i is
given by

〈mz
i 〉 =

1
Z

∫
DΩ eE mz

i = mi 〈sz
i 〉 , (8)

which is a function of the easy-axis direction ei, ni and
the parameters σ, x, ξd (or equivalently K,H, T, ξd). Next,
we infer the magnetization of the assembly per particle as

〈mz
as〉 (σ, x, ξd) =

1
N

∫
d2ei

2π

N∑

i=1

w(ni) 〈mz
i 〉 (mi, ei, σ, x, ξd), (9)

where w(ni) is some distribution of the Bohr magneton
numbers ni.

Therefore one has first to compute the magnetization
of a single particle defined in (8). Analytically, this can
only be done in the case of weak DDI using thermody-
namic perturbation theory [18]. This operates by expand-
ing the Boltzmann distribution P = Z−1 exp(E) in powers
of the interaction parameter ξd, that is

P = P0

(
1 + ξdF1 +

1
2
ξ2dF2 + . . .

)
,

where

P0 =
1
Z0
eE

(0) ≡
N∏

i=1

P i
0 (10)

is the Boltzmann distribution of the non-interacting (free)
ensemble, and

Z0 =
N∏

i=1

(∫
d2si

2π
eE

(0)
i

)
=

N∏

i=1

Zi
0,

with Zi
0 being the directional partition function of the

ith free particle. For the system considered here, F1 and F2

are some quadratic, respectively quartic, functionals of si.
Therefore, the calculation of the average of an observ-

able O is reduced to the calculation of averages with re-
spect to the distribution P0 of low powers of the spin
variables. Henceforth, the average with respect to P0 will
be denoted by 〈.〉0.

Consequently, to second order in the interaction pa-
rameter ξd, the average of any physical observable O reads,

〈O〉 � 〈O〉0 + ξdΛ
(1) +

1
2
ξ2dΛ

(2) +O
(
ξ3

)
(11)

with,





Λ(1) ≡ 〈OG1〉0 − 〈O〉0 〈G1〉0 ,

Λ(2) ≡ 〈OG2〉0 − 〈O〉0 〈G2〉0 − 2 〈G1〉0 Λ(1),
(12)

where,

G1 ≡
∑

i>j

Φij ,

G2 ≡
∑

i>j

Φ2
ij +

∑

i>j

∑

k>l

ΦijΦklqik:jlqil:jk,
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with qik:jl annihilating terms containing duplicate pairs:
qik:jl = 1

2 (2− δik − δjl)(1 + δik)(1 + δjl) [17]. Note that in
contrast with the situation in reference [17], the 1st-order
averages 〈O〉0 do not vanish here due to the presence of
the external field.

The magnetization of a single particle interacting with
all other particles in the assembly can be written to second
order in ξd as in equation (11), for the observable Sz

i , that
is the (dimensionless) magnetization in the direction of
the field taken along the z axis,

〈Sz
i 〉 � 〈Sz

i 〉0 + ξdΛ
(1) +

1
2
ξ2dΛ

(2), (13)

where Λ(1) and Λ(2) are obtained from equation (12) by
setting O to Sz

i .
Now, the calculation of Λ(1) and Λ(2) involves that of

averages of products of Sz
i whose order ranges from 1 to 5.

Introducing the notation

bi ≡ 〈Sz
i 〉0 , b′i =

∂ 〈Sz
i 〉0

∂x
,

the average of an arbitrary degree of Sz
i is expressed by the

function bi and its nth-order derivatives b(n)
i [21]. Restrict-

ing ourselves to 1st-order in ξd, and thereby to 3rd-order
averages, we have

〈
Sz

i S
z
j

〉
0

= bibj + b′iδij , (14)
〈
Sz

i S
z
jS

z
k

〉
0

= bibjbk+b′ibjδik+b′ibkδij +bib′jδjk+b′′i δijδjk.

Next, noting that since i) the field is applied along the
z axis the average of the x, y components vanishes, ii) DDI
only involve pairs of distinct indices, say i, j so that δij =
0, equation (13) leads to the following expression for the
magnetization of an interacting assembly (to first order
in ξd),

〈Sz
i 〉 � 〈Sz

i 〉0 + ξd

N∑

k=1

〈Sz
k〉0Aki

∂〈Sz
i 〉0

∂x
, (15)

with

Akl =

[
3(eh · ekl)2 − 1

]

r3kl

= eh · Dkl · eh.

As was discussed in reference [17] and confirmed in
Section 3.3 below, for non spherical systems, the correc-
tions to the magnetization are largely dominated by the
first order contribution to the DDI.

Upon examining equation (15) one sees that the mag-
netization of an interacting particle is written in terms
of the magnetization of the free particle and its deriva-
tives. In order to render this expression more explicit and
thereby more useful from a practical point of view, we have
to consider some limiting cases where analytical expres-
sions can be derived. So, next we compute the free-particle
magnetization 〈Sz

k〉0 and its derivative with respect to x.

3.2 Limiting cases for the free-particle magnetization:
effect of anisotropy

The free-particle (reduced) magnetization is given by

〈sz
i 〉0 =

1
Z0

∫ N∏

k=1

(
d2sk

2π
eE

(0)
k

)
sz

i =
1
Zi

0

∫
d2si

2π
eE

(0)
i sz

i . (16)

This can be computed exactly by numerical integration
upon changing to spherical coordinates. More precisely,
using (4) without the DDI term we rewrite (16) as follows

〈sz
i 〉0 =

1
z0

∫ 2π

0

dϕ

∫ 1

−1

du e
σi
2 y2(u)+xiu u, (17)

where

y(u) = u pi +
√

1 − u2

√
1 − p2

i cosϕ,

z0(mi, ψ, σ, x) =
∫ 2π

0

dϕ

∫ 1

−1

du e
σi
2 y2(u)+xiu,

with pi ≡ eh · ei. Equation (17) is valid for all values
of σ and x (or K,H, T , and Vi). However, numerical in-
tegration is very time consuming, and knowing that we
have to do this for all particles and then average over the
two distributions, renders this expression of little practi-
cal interest. Instead, one may derive sensible analytical
expressions in the relevant limiting cases such as low and
high field regimes. The low field case is dealt with per-
turbatively while the high field case is treated using the
steepest-descent approximation.

Let us now give approximate analytical expressions for
the magnetization of a particle in the assembly in these
two limiting cases.

3.2.1 Low field

The low-field expansion obtained in [19] reads (upon in-
troducing the particle index i)

〈sz
i 〉lf0 � 1 + 2Si2Pi2

3
xi

− 7 + 70(Si2Pi2)2 + 40Si2Pi2 − 12Si4Pi4

315
x3

i , (18)

where,

Sil(σi) �






(l−1)!!
(2l+1)!! (

σi

2 )l/2 + . . . , σi � 1,

1 − l(l−1)
4σi

+ . . . , σi � 1,
(19)

and Pil = Pil(eh · ei) are the Legendre polynomials. For
a textured assembly, all of the angular functions Pil turn
into unity, while for randomly distributed easy axes ei we
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have Pi2 = Pi4 = 0, P 2
i2 = 1/5. Hence, the magnetization

in low field becomes

〈sz
i 〉lf0 �





1 + 2Si2

3
xi − 7 + 70S2

i2 + 40Si2 − 12Si4

315
x3

i , textured

xi

3
− 1 + 2S2

i2

45
x3

i , random.

(20)

It is obvious from these expressions that the magnetization
is larger if the anisotropy is textured along the applied
field.

3.2.2 High field: steepest-descent approximation

The single-particle partition function Zi
0 in equation (16)

reads

Zi
0 ∝

∫
dsiδ

(
s2
i − 1

)
eE

(0)
i =

∫
dsiδ

(
s2
i − 1

)
e

σi
2 (si·ei)

2+xi.si . (21)

Temporarily dropping the particle index i for simplic-
ity, Zi

0 can be rewritten using the Hubbard-Stratonovich
transformation [22] which consists in introducing an aux-
iliary (vector) field ξ and using the Gaussian integration
formula

exp
[σ
2

(s.e)2
]

=
√

σ

2π

∫ +∞

−∞
du exp

(
−σ

2
u2 + σ(s.e)u

)
, (22)

so that equation (21) can be rewritten as

Z = Const.
∫
due−

σ
2 u2

∫
dsδ(s2 − 1)es.ξ =

Const.
∫
due−βS(u,ξ), (23)

where ξ is the (auxiliary) effective field acting on each
magnetic moment,

ξ = x + σue, (24)

and is the (vector) sum of the applied magnetic field and
the anisotropy field; S(u, ξ) is the effective action given by

S(u, ξ) =
σ

2β
u2 − 1

β
ln

[∫
dsδ

(
s2 − 1

)
es.ξ

]
=

Const.+
σ

2β
u2 − 1

β
ln

[
sinh(ξ)
ξ

]
. (25)

The variable u appearing in equation (24) is determined
through the minimization of S(u, ξ), and which thereby
reads

u0 =
B(ξ0)
ξ0

ξ0 · e, (26)

where B(x) = coth(x) − 1
x is the Langevin function. This

is a transcendental equation for u0 leading to a transcen-
dental equation for ξ0,

ξ0 = x + σ
B(ξ0)
ξ0

(ξ0 · e)e. (27)

Next, we use the steepest-descent (or saddle point) ap-
proximation [23] to compute the partition function and
the action of the particle in a high magnetic field, i.e.,
x � 1. This consists in Taylor expanding the action (25)
around u0, which then may be rewritten as

βS = βS0 +
1
2

ln(1 −X),

X =
(
σB(ξ0)
ξ0

)[
1 − (ξ0 · e)2

ξ20

]
, (28)

which can be further expanded. Since, in terms of (u0, ξ0),
the free energy and the action are equal, the particle mag-
netic moments is given by

〈s〉 =
[
∂(βS)
∂x

]

u0

, (29)

and along the field direction, i.e., ez = eh = x/x, we get

〈sz〉 = 〈s〉 · eh =
B(ξ0)
ξ0

(ξ0 · eh). (30)

In order to compute 〈sz〉, we must solve (27) for ξ0,
and this can be done perturbatively assuming that the ap-
plied field is large and proceeding by successive expansions
in 1/x and replacing several times u0 and ξ0 by their ex-
pressions (26) and (27), respectively. Note that ξ0 depends
onB(ξ0) but since the Langevin function rapidly saturates
to 1, in the high-field case we may take B(ξ0) ∼= B(x) or
even B(ξ0) ∼= 1 − 1/x. Consequently, we obtain

ξ0 = x+ σp2

[
1 +

−1 + 3
2

(
1 − p2

)
σ

x

]
.

Upon using these expressions and reinstating the moment
index i, we obtain the approximate expression for the free
particle’s magnetization as an expansion in 1/x,

〈sz
i 〉hf

0 � 1 − 1
xi

+
Σi

x2
i

, (31)

where,

Σi =
σi

2
[
3p2

i − 1 + σp2
i

(
p2

i − 1
)]
, pi ≡ eh · ei.

Equation (31) is only valid at high fields but at all
temperatures, though it yields a better approximation at
low temperatures. More precisely, it is valid for fields H
larger than

Hmin =
kBT

µBni
xmin, xmin =

1 +
√
∆

2
, ∆ = 1 − 4Σi.
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Fig. 1. Exact (numerical) calculation versus approximate expressions of the reduced magnetization of a monodisperse assembly
with random anisotropy.

Expression (31) is much easier to handle than (17), and
it yields the same result in its range of validity, i.e., for
x � xmin.

For a textured and random-anisotropy assembly, we
infer from equation (31)

〈sz
i 〉hf

0 �






1 − 1
xi

+
σi

x2
i

, textured

1 − 1
xi

− σ2
i

15
1
x2

i

, random.

(32)

The validity of the asymptotic low field and high field
expressions of the magnetization given in (20) and (32),
respectively, is checked by comparing the latter to the ex-
act numerical results obtained from equation (17). For ex-
ample, Figure 1 shows such a comparison for a monodis-
perse assembly and random anisotropy. It is clear that the
asymptotic expressions are good enough. Moreover, even
at a relatively high temperature (here small σ), for which
the steepest-descent approximation is expected to work
worst because x becomes small, expression (32) renders a
good approximation.

3.2.3 Comparison with the exact calculation and Langevin’s
function

We can immediately infer some results from the low and
high field expressions derived above. Indeed, considering
that the Langevin function L(xi) = cothxi−1/xi expands
to �xi/3 − x3

i /45 at low fields and to �1 − 1/xi at high
fields, equations (20), (32) readily imply that:

– both low-field and high-field curves fall onto the
Langevin curve if the assembly is isotropic, i.e., σi = 0.

– the magnetization of a textured assembly falls above
the Langevin curve, while that of an assembly with

random anisotropy falls below Langevin’s curve, and
the larger is the anisotropy (hence σi), the larger is the
deviation.

To confirm these results, we numerically compute
the magnetization (17) for monodisperse and polydis-
perse assemblies of magnetic moments, with random
anisotropy. In the second case we considered a simple
Gaussian (or normal) distribution. The results are pre-
sented in Figure 2. This clearly shows that as σ in-
creases, or equivalently at a fixed temperature and increas-
ing anisotropy constant, the magnetization drops. Indeed,
stronger anisotropy implies that it is more favorable for
the magnetic moments to align along their randomly ori-
ented easy axes, and so the Zeeman energy is not sufficient
to align them along the field direction, as is clearly shown
by equations (20), (32). This holds for both monodisperse
and polydisperse assemblies. Note also that the zero or
very weak anisotropy curves coincide with the Langevin
function L(ξ) = coth(ξ) − 1/ξ, which simply confirms the
fact that Langevin’s law is only rigorously valid in the ab-
sence of anisotropy or at high temperature, or more pre-
cisely in the superparamagnetic regime. On the contrary,
for a textured assembly [whose results are not shown here]
all easy axes are parallel and obviously stronger anisotropy
leads to larger magnetization.

We have also investigated the effect of anisotropy on
the magnetization of some typical nanoparticle assemblies
with the most often observed volume (or n) distribution in
samples of magnetic nanoparticles, namely the lognormal
distribution with parameters µ, δ,

w(n) =
1

nδ
√

2π
exp

[
−1

2

(
lnn− µ

δ

)2
]
. (33)

We consider assemblies of, e.g., cobalt or maghemite,
nanoparticles with mean diameter Dm = 3 and 7 nm. We
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simulate the assembly as a collection of magnetic moments
randomly assigned to the sites of a regular simple cubic
lattice. The moment magnitude distribution is taken from
experiments [24] upon converting the volume or diame-
ter to the corresponding number of Bohr magnetons n.
The magnetization of these assemblies is computed using
the standard equilibrium Monte Carlo technique [25,14]
at arbitrary temperature, applied field, and DDI param-
eter ξd. For a non-interacting assembly the field behavior
of the magnetization, for different values of the param-
eter σ is shown in Figures 3. In Figure 3a we observe
that, in the high field regime, the conclusions drawn from
Figure 2 are confirmed in the present case too. That is,
the higher is σ, the lower is the magnetization. On the

other hand, in low fields this is not globally so because
the competition between Zeeman, thermal and anisotropy
contributions to the energy, for this distribution, results
in a crossing between the various magnetization curves,
as has been observed, e.g., for maghemite particles [see [9]
(Fig. 10) and [12]]. In fact, this situation is reminiscent of
the two phases [blocked and superparamagnetic] exhibited
by the zero-field-cooled magnetization, and separated by
the temperature Tmax at the peak. More precisely, at a
given applied field H , if x is sufficiently large, T is smaller
than Tmax, and thus the larger is the anisotropy and/or
particle volume, the higher is the energy barrier, and the
smaller is the magnetization, because most of the parti-
cles remain in their blocked states with almost randomly



306 The European Physical Journal B

oriented moments. In the opposite situation, small x cor-
responds to high temperature, and in this case anisotropy
has a negligible effect, so that a higher volume corresponds
to a higher magnetic moment (or n) and thereby to a
higher Zeeman energy, which is necessary to take over
the strong thermal fluctuations. Higher Zeeman energy,
of course, builds larger magnetization. Equally important
is the observation of the related effect, also observed ex-
perimentally in maghemite particles [see e.g., Fig. 10 of
Ref. [9]], that the magnetization as a function of field
[see Fig. 3a] has a much larger slope for small x than for
large x. Furthermore, we see that there is a large deviation
from the Langevin law, due to several parameters, ignored
by the latter, especially anisotropy. In addition, we see in
Figure 3b that, as was observed earlier, the larger is the
mean diameter of the assembly, the larger is σ, and thereby
the larger is the deviation from the Langevin curve.

3.3 Effect of dipolar interactions

Now, we derive the expressions analogous to equa-
tions (20), (32) for a weakly interacting polydisperse as-
sembly. We only do this in the case of random anisotropy.
Accordingly, inserting the low and high field expan-
sions (20), (32) in equation (15) leads to analytical expres-
sions for the magnetization of a weakly interacting assem-
bly as a function of field, temperature, anisotropy, and the
DDI parameter ξd. The assembly (reduced) magnetization
per particle is defined as 〈sz〉ass = 1/N ∑N

i=1 〈sz〉i. In the
case of randomly distributed easy axes we obtain,

〈sz〉ass �




[
1 +

ξ̃d
3
C(1,2)

]
〈x〉
3

−
[
A3 +

4
3
ξ̃dA5

] 〈x〉3
45

, low field

1 − 1
〈x〉 −

[
〈σ〉2
15

− ξ̃dC(0,1)

]
1

〈x〉2

+ξ̃d

[
2 〈σ〉2

15
C(1,1) − C(0,0)

]
1

〈x〉3 , high field,

(34)

where we have defined [see Eq. (3) for notation] ξ̃d ≡
ξd 〈n〉2 , 〈x〉 ≡ 〈n〉x, 〈σ〉 ≡ 〈n〉σ, with 〈n〉 ≡ 1/N ∑N

i=1 ni,
and the (scaled) constants

C(a,b) =
1
N

N∑

i,j=1,i�=j

na
iAijn

b
j

〈n〉a+b
,

A3 =
1
N

N∑

i=1

n3
iαi

〈n〉3 , A5 =
1
N

N∑

i,j=1,i�=j

αin
3
iAijn

2
j

〈n〉5 . (35)

αi = 1 + 2S2
i2 with Si2 defined in (19).

Note that there are three types of contributions: There
are pure anisotropy terms, pure DDI terms, and mixed
terms. It is readily seen that in the absence of anisotropy
and DDI, i.e., for σi = 0, ξd = 0, and from equation (19)
αi = 1, expressions (34) simplify back, in the case of a
monodisperse assembly with ni = n̄, to the expansions of
the Langevin function in low and high field regime given
at the beginning of Section 3.2.3, or as can be inferred
from equations (20), (32). Let us now discuss the con-
stants C(a,b), A3, A5.

First, in the continuum limit the lattice sum C(0,0) =
1
N

∑N
i,j=1,i�=j Aij becomes [17] C(0,0) = 4π(1/3 − λz), for

a simple cubic lattice, with λz being the demagnetizing
factor along the z axis. For instance, for a box with semi-
axes a = b = 5, c = 10, we have

λz =
abc

2

∫ ∞

0

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
� 0.174,

so that C(0,0) = 4π(1/3 − λz) � 2. Note that in the
monodisperse case we have C(a,b) ∝ C(0,0).

In the polydisperse case, using the assemblies of Fig-
ure 3, in Figure 4 we plot these constants as functions of
the size Z along the field direction for a box-shaped lat-
tice with size N = X × Y × Z, and X = Y = 10, for
the mean diameter of 3 and 7 nm. It is clear from Fig-
ure 4 that these constants, and thereby the corresponding
DDI terms in equation (34), are shape dependent. This is
no surprise knowing that the long range DDI lead to shape
dependence of the physical quantities, and in particular
the magnetization. On the other hand, we see that these
constants are negative for the oblate system, and positive
for the prolate, which implies that the DDI suppress the
assembly magnetization in the former case and enhance it
in the latter. Moreover, it is also seen that for cubic sys-
tems all the constants C(a,b) vanish, which means that the
DDI do not contribute to the magnetization in this case,
and thus the deviations from the Langevin behavior are
caused only by anisotropy. Note that all the scaled con-
stants C(a,b) are almost independent of the assembly mean
diameter. In particular, this is trivial for C(0,0).

In order to study the constants A3, A5 in a similar
way, we have to make assumptions about the intensity of
the anisotropy, since these constants contain the parame-
ter αi. From equation (19) we infer that in the absence of
anisotropy, i.e., σi = 0, αi = 1, while for strong anisotropy
we may approximate Si2 to 1, and hence αi to 3, so that
A3 ∝ (1/N )

∑
i n

3
i / 〈n〉3 and A5 ∝ C(2,3) in both limits of

anisotropy. ForDm = 3, 7 nm, A3 � 2, 6. In the continuum
limit A3 tends to exp(3δ2), where δ is the standard devia-
tion of the distribution (33). A5 shows the same behavior
as C(1,2) but with bigger change with Dm. It is well known
from other areas of physics that the calculation of such
high-order moments (or “cumulants”) requires more pre-
cision because they present more statistical fluctuations
with the lattice size.

In Figure 5 we plot the Langevin function (full line)
and the Monte Carlo results (symbols) for the magneti-
zation of an interacting assembly of (N = 10 × 10 × 5)
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lognormal-distributed moments, with random anisotropy,
and for different values of the inter-particle distance. Here
we use the same assemblies as in Figure 3. The intensity
of DDI, or equivalently the value of ξd, is varied by vary-
ing the lattice parameter a entering ξd [see Eq. (3)]. More
precisely, the parameter a is taken as a real number times
the mean diameter Dm of the assembly, i.e., a = k ×Dm.
Thus, large values of k correspond to an isotropically in-

flated lattice with large distances between the magnetic
moments, and thereby weak DDI.

These results, obtained for an assembly on a simple
cubic lattice, do confirm that DDI suppress the magneti-
zation. Indeed, we recall that it was shown by Luttinger
and Tisza [28] [see also the more recent work [16] using the
Monte Carlo technique] that the ground state of a simple
cubic lattice of dipoles is antiferromagnetic, while that of a
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face-centered cubic lattice is ferromagnetic. It is also seen
that these curves deviate from the Langevin law. How-
ever, we emphasize that the deviations induced by DDI
are much smaller than those induced by anisotropy, as al-
ready discussed earlier [see also Ref. [17] for a related dis-
cussion of the effect of the system shape on the magnetic
susceptibility of a monodisperse assembly]. In the inset of
Figure 5 the same results are magnified by plotting them
in function of ζ = (〈x〉 /ξ̃d) × 10−3 ∝ µBH/(µ2

B/a
3), i.e.,

the ratio of Zeeman energy to the DDI energy, which also
makes it possible to distinctively plot the analytical ex-
pressions (34) for low field. In the case of high field only
one curve (k = 2, i.e., relatively strong DDI) is presented
since for the other values of DDI parameter k, the steepest-
descent approximation is valid for much higher values of ζ.
Note also that in function of the parameter ζ the tendency
with increasing DDI strength is reversed.

4 Concluding remarks and open problems

We have provided simple approximate analytical expres-
sions for the magnetization of a weakly interacting poly-
disperse assembly of magnetic moments with randomly
distributed easy axes, in both low and high field regimes.
These expressions have been checked against extact calcu-
lations using either numerical integration of the partition
function or Monte Carlo simulations. We have also com-
puted the magnetization of such systems for an arbitrary
inter-particle separation, or equivalently arbitrary inten-
sity of dipole-dipole interactions, using the Monte Carlo
technique. However, in this case only assembly of limited
sizes could be dealt with, as the calculation speed is re-
duced to a crawl by the long-ranged DDI. We have inves-
tigated the deviations caused by random anisotropy, DDI,
and polydispersity, from the Langevin law that is com-
monly invariably used in the literature to describe the
magnetization of real materials. We have also found that
more realistic assemblies with a lognormal volume distri-
bution, render a magnetization that exhibits two different
regimes as a function of the applied field, with different
variation slopes, as has been observed in experiments on
maghemite particles. Moreover, as a byproduct, we find
that the magnetization of an assembly of nanoparticles
in the one-spin approximation considered here, i.e., with
each particle represented by a macro-spin, does saturate
in high fields. This suggests that the magnetization non-
saturation observed in experiments on small particles is
most likely due to some intrinsic properties of the parti-
cles, such as surface effects, as has been argued in many
publications [see e.g., [9,29] and many references therein].

For future investigation, we intend to apply the
Fast-Fourier-Transform technique to speed up the
Monte Carlo calculations especially for interacting assem-
blies of more reasonable sizes, and take account, inter
alia, of random spatial distributions of the particles on
the lattice. Using the kinetic Monte Carlo technique, we
also intend to investigate the disappearance of the maxi-
mum in Tmax(H) as the concentration of the assembly is
increased, and also the appearance of the spin-glass like

state at low temperature. For the latter purpose, we will
most likely have to tackle the problem of an assembly of
multi-spin particles.

We thank Yu. Raikher for reading the manuscript and suggest-
ing judicious improvements.

References

1. X. Battle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15
(2002)

2. R. Skomski, J. Phys. C: Condens. Phys. 15, R841 (2003)
3. J.-L. Dormann, D. Fiorani, E. Tronc, Adv. Chem.

Phys. 98, 283 (1997)
4. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001)
5. M.P. Sharrock, IEEE Trans. Magn. 26, 193 (1990)
6. K.E. Johnson, J. Appl. Phys. 69, 4932 (1991)
7. J.L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F.

Lucari, F. D’Orazio, L. Spinu, M. Noguès, H. Kachkachi,
J.P. Jolivet, J. Magn. Magn. Mater. 203, 23 (1999)

8. P.E. Jönsson, S. Felton, P. Svedlindh, P. Nordblad, M.F.
Hansen, Phys. Rev. B 64, 212402 (2001)

9. E. Tronc et al., J. Magn. Magn. Mater. 221, 63 (2000)
10. R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J.P. Boilot,

D. Zins, Phys. Rev. B 56, 14551 (1997)
11. H. Kachkachi, W.T. Coffey, D.S.F. Crothers, A. Ezzir,

E.C. Kennedy, M. Noguès, E. Tronc, J. Phys.: Condens.
Matter 48, 3077 (2000)

12. A. Ezzir, Propriétés magnétiques d’une assemblées de
nanoparticules: modélisation de l’aimantation et de la sus-
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